Exercise 15

In Exercises 13-16, show that the given function $u(x)$ is a solution of the corresponding Volterra integro-differential equation:

$$
u^{\prime \prime}(x)=1+\int_{0}^{x}(x-t) u(t) d t, u(0)=1, u^{\prime}(0)=0, u(x)=\cosh x
$$

Solution

Substitute the function in question on both sides of the integro-differential equation.

$$
\begin{array}{r}
\frac{d^{2}}{d x^{2}}(\cosh x) \stackrel{?}{=} 1+\int_{0}^{x}(x-t) \cosh t d t \\
\cosh x \stackrel{?}{=} 1+\int_{0}^{x}(x-t) \cosh t d t
\end{array}
$$

Use integration by parts to solve the integral. Let

$$
\begin{array}{rr}
v=x-t & d w=\cosh t d t \\
d v=-d t & w=\sinh t
\end{array}
$$

and use the formula $\int v d w=v w-\int w d v$.

$$
\begin{aligned}
\cosh x & \stackrel{?}{=} 1+\underbrace{\left.(x-t) \sinh t\right|_{0} ^{x}}_{=0}-\int_{0}^{x} \sinh t(-d t) \\
& \stackrel{?}{=} 1+\int_{0}^{x} \sinh t d t \\
& \stackrel{?}{=} 1+\left.(\cosh t)\right|_{0} ^{x} \\
& \stackrel{?}{=} 1+(\cosh x-1) \\
& =\cosh x
\end{aligned}
$$

Therefore,

$$
u(x)=\cosh x
$$

is a solution of the Volterra integro-differential equation.

